QSJp98

- **1. a)** 975
 - **b)** 40
 - **c)** 50
 - **d)** -11
 - **e)** 320
- **2. a)** 24*x*
 - **b)** 41*x* 10
 - **c)** 17*x* 9
 - **d)** –*x* + 19
- 3. AD = 10,1 cm
- **4. a)** 6,5*n* + 3,5
 - **b)** 5 0,2*x*

Corrigé

Corrigé

FA237 On bouche les trous

a) 105

e) 200

b) 88

f) 247

c) 1000

g) 32

d) 1

h) (–250)

FA238 On réduit si possible

- **a)** 26*y*
- **b)** -6a
- **c)** 20 6*x*
- **d)** -16x + 9
- **e)** 4*y* + 12,9

FA239 Expressions littérales

- a) $\frac{X}{4}$ 16, où x est un nombre réel.
- **b)** $\frac{x-16}{4}$ ou (x-16): 4, où x est un nombre réel.
- c) $3x^2$, où x est un nombre réel.
- **d)** $(3x)^2 = 9x^2$, où x est un nombre réel.
- e) 10n + 6 où n est le chiffre des dizaines.
- f) 10n francs, où n est le nombre de billets.
- g) $\frac{10b}{2}$ cm², soit 5b cm², où b est la mesure, en cm, de la base correspondante à cette hauteur du triangle.
- **h)** n-25 ans, où n est l'âge de la maman.

Corrigé

FA240 Isocèle en A

AB = AC = 15.5 m

Corrigé

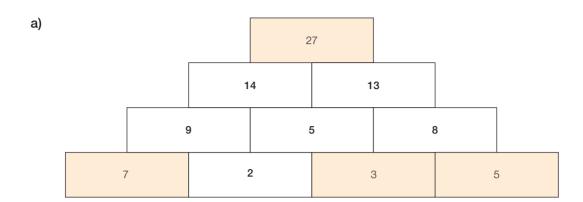
FA241 Réduire

a) 4*z*

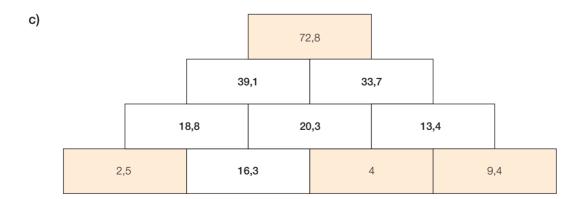
c) a^4

e) 5,5x + 4,5

b) –a

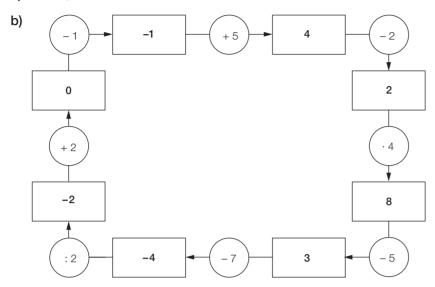

d) -7y

Corrigé


FA242 Avec des essais?

- a) Les trois nombres sont 57, 58 et 59.
- **b)** Il a pensé à 4,8.
- c) Ils ont affiché au départ le nombre $\frac{24}{7}$.

FA243 Pyramides



Mathématiques 9-10-11 © CIIP – LEP, 2013

FA244 Terminer la boucle

a) x = 6.8

Corrigé

FA245 Grâce à des x

- a) x 35 francs
- **b)** 46 *x* moutons
- **c)** x + 35 ans
- **d)** 362 + x km
- e) 33 x pièces de un franc
- **f)** 7x + 40 francs
- **g)** 5x 48 livres
- **h)** x cm; $2x \text{ cm et } \frac{3x}{2} \text{ cm}$.
- i) 0,20x francs.
- j) Rabais: 0.3x francs; somme à payer: x 0.3x = 0.7x francs

Corrigé

FA246 Le même résultat

- a) N'importe quel nombre réel.
- b) Impossible.
- **c)** -1
- **d)** 4
- **e)** 3

FA247 Etranges égalités

Strictement (à condition que)

a) Oui

b) Non (si y = -6)

c) Oui

d) Non (si y = z)

Strictement

(à condition que)

e) Non

(si g = 6)

f) Non

(si a = c)

g) Non

(si z = -1)

h) Oui

Corrigé

FA248 Quand est-elle égale à?

a)
$$x = 1.5$$

b)
$$c = 4.5$$

c)
$$y = 2$$

d)
$$p = 40$$

e)
$$x = -2$$

Corrigé

Corrigé

FA249 Des x et des x

a)
$$x = 22$$

e) Impossible

i) x = 0

b)
$$x = 1$$

f)
$$x = 4.5$$

j)
$$x = 3$$

g)
$$x = 2$$

k)
$$x = 20$$

d)
$$x = -7$$

h)
$$x = 3$$

I)
$$x = -7$$

FA250 Associe

1. a)
$$S_2 = \{5\}$$

d)
$$S_1 = \{0\}$$

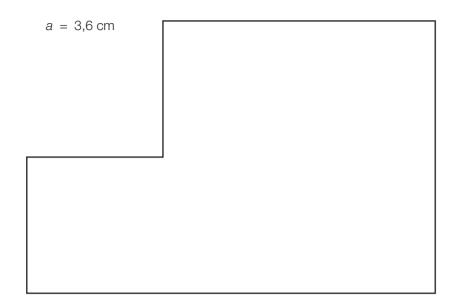
g)
$$S_2 = \{5\}$$

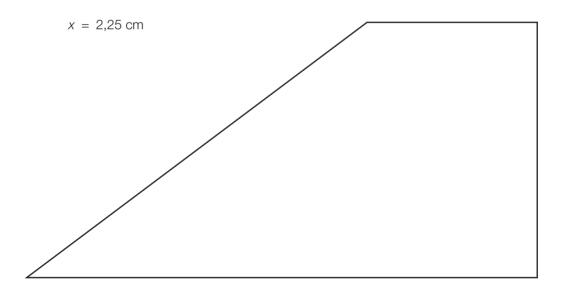
b)
$$S_3 = \{-5\}$$

e)
$$S_3 = \{-5\}$$

h)
$$S_4 = \emptyset$$

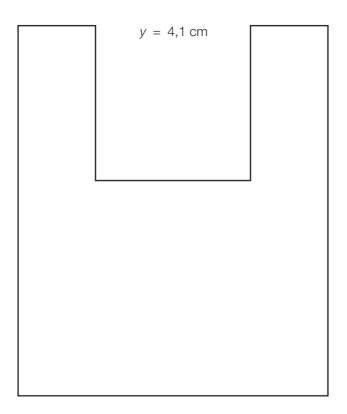
k)
$$S_1 = \{0\}$$


c)
$$S_2 = \{5\}$$


f)
$$S_1 = \{0\}$$

i)
$$S_3 = \{-5\}$$

I)
$$S_1 = \{0\}$$


FA251 Toujours 36

SUITE →

Mathématiques 9-10-11 © CIIP – LEP, 2013

FA252 Toujours en équilibre?

a) Oui

b) Non

c) Non

d) Oui

Corrigé

FA253 De haut en bas

- 1. a) On soustrait 3 aux deux membres de l'équation.
 - b) On additionne 10 aux deux membres de l'équation.
 - c) On divise par 13 les deux membres de l'équation.
 - d) On multiplie par 2 les deux membres de l'équation.
 - e) On soustrait 12x aux deux membres de l'équation; on additionne ensuite 6 aux deux membres de l'équation; on divise, pour terminer, par 6 les deux membres de l'équation.

- **2.** a) x = 2; $S = \{2\}$ b) x = 6; $S = \{6\}$ c) x = -1.6; $S = \{-1.6\}$

FA254 Dix équations

a)
$$x = 9$$
; $S = \{9\}$

b)
$$x = 31$$
; $S = \{31\}$

c)
$$x = 8$$
; $S = \{8\}$

d)
$$x = -4$$
; $S = \{-4\}$

e)
$$x = 5.6$$
 ; $S = \{5.6\}$

f)
$$x = 28$$
; $S = \{28\}$

g)
$$x = 0$$
; $S = \{0\}$

h)
$$x = -2.5$$
; $S = \{-2.5\}$

i)
$$x = 100$$
; $S = \{100\}$

j)
$$x = -18$$
; $S = \{-18\}$

Corrigé

FA255 Dix équations supplémentaires

a)
$$x = 8$$
; $S = \{8\}$

b)
$$x = 6$$
; $S = \{6\}$

c)
$$x = 0$$
; $S = \{0\}$

d)
$$S = \mathbb{R}$$

e)
$$x = -13$$
; $S = \{-13\}$

f)
$$x = 3$$
; $S = \{3\}$

g)
$$S = \emptyset$$

h)
$$x = 294$$
; $S = \{294\}$

i)
$$x = -5.5$$
; $S = \{-5.5\}$

j)
$$x = -3$$
; $S = \{-3\}$

Corrigé

FA256 De tête!

a)
$$x = 5$$
; $S = \{5\}$

g)
$$S = \mathbb{R}$$

h)
$$x = 4$$
; $S = \{4\}$

b)
$$x = 3.6$$
; $S = \{3.6\}$

i)
$$x = 132$$
; $S = \{132\}$

n)
$$S = \emptyset$$

c)
$$x = 7$$
; $S = \{7\}$
d) $x = 0$; $S = \{0\}$

j)
$$x = 5$$
; $S = \{5\}$

o)
$$x = -5$$
; $S = \{-5\}$
p) $x = -2$; $S = \{-2\}$

m) x = 2.8; $S = \{2.8\}$

e)
$$x = 1.5$$
; $S = \{1.5\}$

k)
$$x = 80$$
 ; $S = \{80\}$

f)
$$x = 8$$
; $S = \{8\}$

I)
$$x = 8$$
; $S = \{8\}$

Corrigé

FA257 Cherche la résolution correcte

- a) La troisième
- b) La deuxième
- c) La deuxième
- d) La première

Corrigé

FA258 C'est plus visuel!

- 1. Il s'agit de l'abscisse du point d'intersection des deux droites.
- **2.** a) $S = \{2\}$
- **b)** $S = \{-2\}$
- c) $S = \{-1\}$
- **d)** $S = \{4\}$

- 3. a) $S = \{-5\}$
- **b)** $S = \{-1,7\}$
- c) $S = \emptyset$
- **d)** $S = \{0\}$

FLPp104

- 1. 7x 4
- 6 est la solution de l'équation.
- **3.** Par exemple:

$$3x - 27 = 11x - 3$$

$$3x = 11x + 24$$

$$-24 = 8x$$

$$x = -3$$

- **4. a)** x = 5; $S = \{5\}$ **c)** x = 0; $S = \{0\}$

 - **b)** x = -11; $S = \{-11\}$ **d)** x = -3; $S = \{-3\}$

Corrigé

FA259 Les masses

- a) La masse est de 25 g.
- b) La masse est de 475 g.
- c) La masse est de 85 g.
- d) La masse est de 30 g.

Corrigé

FA260 Le concert de hip-hop

Le billet coûte 55 francs.

Corrigé

FA261 La somme vaut 790

Le plus petit nombre est 156.

Corrigé

FA262 Trois angles à déterminer

Les trois angles mesurent 90°, 18° et 72°.

Corrigé

FA263 La mesure du petit côté

Le petit côté mesure 4 cm.

Corrigé

FA264 Le nombre de départ

Le nombre affiché au départ est 13.

FA265 Ajouter et soustraire vingt-trois

Le nombre est 23.

Corrigé

FA266 Nombres entiers consécutifs

Il n'est pas possible de trouver de tels nombres.

Corrigé

FA267 120 à partager

Les deux parties sont 57 et 63.

FLPp105

- 1. a) 8x + 15 = x + 64, où x est le nombre cherché.
 - **b)** x + 2x = 42; 3x = 42, où x est le nombre de chocolats emballés de rose.
- 2. a) Dans x années, on aura:

$$38 + x = 2(13 + x)$$

$$x = 12$$

Dans 12 ans, l'âge de la fille sera la moitié de celui de la mère.

b) Soit x la somme économisée par Natacha.

$$3x + x + (3x + 12) = 376$$

$$x = 52$$

Natacha a économisé 52 francs, Soraya 156 francs et Cyril 168 francs.

Corrigé

FA268 Et encore dix équations de plus

a)
$$x = 11$$
; $S = \{11\}$

b)
$$x = \frac{1}{2}$$
; $S = \{0,5\}$
c) $x = 2$; $S = \{2\}$

d)
$$x = -14$$
; $S = \{-14\}$

f)
$$x = 3$$
; $S = \{3\}$

g)
$$x = -7$$
; $S = \{-7\}$

h)
$$S = \emptyset$$

i)
$$x = 12$$
; $S = \{12\}$

j)
$$x = 0$$
; $S = \{0\}$

Corrigé

FA269 Minimaison

La hauteur totale de la maison est de 7,4 m.

Corrigé

FA270 Vase cylindrique

La hauteur atteinte par le liquide est d'environ 10,5 cm.

FA271 Le clocher

La base du triangle isocèle mesure 1,5 cm

Corrigé

FA272 La gymnastique

Le septième recevra 9 barres de céréales.

QSJp106

- **1. a)** Oui
 - b) Non
 - c) Oui
 - d) Non
 - e) Oui
 - f) Oui
- -1 et 6 sont solutions.
- 3. a) x = 1; $S = \{1\}$

 - **b)** $x = \frac{3}{5}$; $S = \{0,6\}$ **c)** $x = -\frac{4}{5}$; $S = \{-0,8\}$
 - **d)** x = 4; $S = \{4\}$
- 4. Soit x le nombre choisi

$$(x-1)\cdot 4 = 7x + 2$$

$$4x - 4 = 7x + 2$$

$$-6 = 3x$$

$$x = -2$$

Le nombre choisi est -2

FA273 Vraiment équivalentes?

- a) Les deux équations ne sont pas équivalentes. Exemple d'une seconde équation équivalente à la première: -10x - 6 = -16
- b) Les deux équations sont équivalentes.
- c) Les deux équations ne sont pas équivalentes. Exemple d'une seconde équation équivalente à la première : $\frac{3}{2}x - 3 = 24$
- d) Les deux équations sont équivalentes.
- e) Les deux équations ne sont pas équivalentes. Exemple d'une seconde équation équivalente à la première: 2x + 6 = 0
- f) Les deux équations sont équivalentes.
- g) Les deux équations sont équivalentes.
- h) Les deux équations ne sont pas équivalentes. Exemple d'une seconde équation équivalente à la première : $2(x^2 + x) = 0$

Corrigé

FA274 Solutions?

-2 et $\frac{5}{2}$ sont solutions.

Corrigé

FA275 Mentalement?

a)
$$y = 7 \cdot S = \{7\}$$

e)
$$y = 3.5$$
; $S = \{3.5\}$

a)
$$u = 7$$
; $S = \{7\}$ **e)** $y = 3.5$; $S = \{3.5\}$ **i)** $y = -2$ ou $y = 3$; $S = \{-2, 3\}$

b)
$$S = \mathbb{R}$$

f)
$$V = 15$$
; $S = \{15\}$

j)
$$x = 36$$
; $S = \{36\}$

c)
$$z = -3$$
; $S = \{-3\}$ **g)** $t = 9$; $S = \{9\}$

a)
$$t = 9 : S = \{9\}$$

k)
$$x = 1$$
; $S = \{1\}$

d)
$$S = \emptyset$$

h)
$$m = 0$$
 ou $m = 1$; $S = \{0; 1\}$ **l)** $z = 4$; $S = \{4\}$

I)
$$z = 4 : S = \{4\}$$

Corrigé

FA276 A résoudre

a)
$$x = 1$$
; $S = \{1\}$

b)
$$x = \frac{4}{5}$$
; $S = \{0,8\}$

c)
$$x = \frac{29}{7}$$
; $S = {\frac{29}{7}}$

d)
$$x = \frac{53}{2}$$
; $S = \{26,5\}$

FA277 Traduction correcte?

Expression en français	Expression littérale 1	Expression littérale 2
La somme de deux multiples de 5 consécutifs	5x + 5y	5x + 5x + 5
La différence de deux nombres élevés chacun au carré	$(x-y)^2$	x^2-y^2
Le produit de deux nombres naturels consécutifs	(x+1)	xy
La somme de deux nombres impairs consécutifs	(2x + 1) + (2x - 1)	(2x + 1) + (2y + 1)
Le cube d'un nombre, diminué de son carré	x^3-x^2	$(x-x^2)^3$

Remarque: A la 5^e question, la réponse correcte (1^{re} expression) n'est due qu'à la présence de la virgule dans la consigne: Le cube d'un nombre, diminué de son carré. Sans cette virgule, la 2^e expression serait correcte.

Corrigé

FA278 Identifications

a) Soit x, le nombre cherché; $4x + 5 = \frac{1}{2} \cdot 3x$; x = -2; $S = \{-2\}$

b) Soit x, le nombre cherché; $x + 15 = x^2 - 5$; $x_1 = -4$ et $x_2 = 5$; $S = \{-4, 5\}$

c) Soit x, le nombre cherché; $x-6=\frac{x}{2}$; x=12; $S=\{12\}$

d) Soit x, le nombre cherché; $2 \cdot 0.5 \cdot 0.25x = 5 \cdot 0.25x$; x = 0; $S = \{0\}$

Corrigé

FA279 Graphiques et Cie

a) F; S₃

d) B; S₆

b) A; S₅

e) C; S₂

c) E; S₁

f) D; S₄

Corrigé

FA280 Un et un seul nombre

Le nombre cherché est 1.

FA281 Permis?

a) Vrai

- **b)** Faux; en divisant par x, la solution x = 0 disparaît.
- **c)** Faux; 4t = 10
- d) Vrai

e) Vrai

f) Vrai

g) Vrai

- h) Faux; en prenant la racine carrée de chaque membre, la solution -7 disparaît.
- i) Faux; $x^2: 2 \neq x$
- i) Vrai

k) Vrai

I) Vrai

Corrigé

FA282 Avec attention

a) x = 17; $S = \{17\}$

d) $S = \emptyset$

b) x = 1; $S = \{1\}$

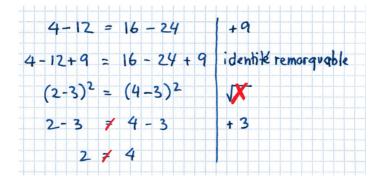
e) x = 0 ; $S = \{0\}$

c) $x = -\frac{1}{13}$; $S = \left\{-\frac{1}{13}\right\}$

f) $x = \frac{36}{5}$; $S = \{7,2\}$

Corrigé

FA283 Avec des fractions


- **a)** $x = \frac{19}{7}$; $S = \left\{\frac{19}{7}\right\}$
- **b)** y = 12; $S = \{12\}$
- **c)** z = 2; $S = \{2\}$
- **d)** $x = \frac{1}{21}$; $S = \left\{\frac{1}{21}\right\}$

- **e)** $x = \frac{4}{3}$; $S = \left\{\frac{4}{3}\right\}$
- **f)** x = -3; $S = \{-3\}$
- **g)** x = 4; $S = \{4\}$
- **h)** $y = \frac{11}{13}$; $S = \left\{\frac{11}{13}\right\}$

Corrigé

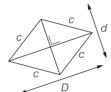
FA284 Paradoxe ou erreur?

C'est une erreur; en prenant la racine carrée des deux membres, on n'obtient pas des expressions équivalentes ($a^2 = b^2$ n'implique pas que a = b).

FA285 D'une formule à l'autre

a)
$$b = \frac{2 \cdot A}{h}$$

b)

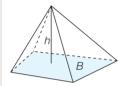

$$c = \frac{p}{4}$$

$$c = \sqrt{A}$$

$$b = \frac{p - 2h}{2} = \frac{A}{h}$$

$$h = \frac{p - 2b}{2} = \frac{A}{b}$$

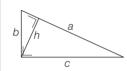
$$C = \frac{p}{4}$$


$$c = \frac{p}{4}$$
$$D = \frac{2A}{d}$$

$$d = \frac{2A}{D}$$

$$a = \sqrt{\frac{A}{6}}$$

$$a = \sqrt[3]{V}$$

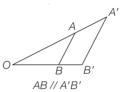

$$B = \frac{3V}{h}$$

$$h = \frac{3V}{B}$$

$$c = \sqrt{\frac{3V}{h}}$$

$$h = \frac{3V}{c^2}$$

$$a = \sqrt{b^2 + c^2} = \frac{bc}{h}$$


$$a = \sqrt{b^2 + c^2} = \frac{bc}{h}$$

$$b = \sqrt{a^2 - c^2} = \frac{ah}{c}$$

$$c = \sqrt{a^2 - b^2} = \frac{ah}{b}$$

$$c = \sqrt{a^2 - b^2} = \frac{ah}{b}$$

$$h = \frac{bc}{a}$$

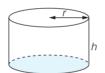
$$OA = \frac{OB \cdot OA'}{OB'}$$

$$OA' = \frac{OA \cdot OB'}{OB}$$

$$OB = \frac{OA \cdot OB'}{OA'}$$

$$OA = \frac{OB \cdot OA'}{OB'}$$

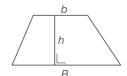
$$OA' = \frac{OA \cdot OB'}{OB}$$


$$OB = \frac{OA \cdot OB'}{OA'}$$

$$OB' = \frac{OA' \cdot OB}{OA}$$

$$r = \frac{p}{2\pi}$$

$$r = \sqrt{\frac{A}{\pi}}$$


$$h = \frac{V}{\pi r^2}$$

$$r = \sqrt{\frac{V}{\pi h}}$$

$$r = \sqrt{\frac{360A}{\pi \cdot \alpha}}$$

$$\alpha = \frac{360A}{\pi r^2}$$

$$h = \frac{2A}{B+b}$$

$$B = \frac{2A}{h} - b$$

$$h = \frac{2A}{B+b}$$

$$B = \frac{2A}{h} - b$$

$$b = \frac{2A}{h} - B$$

$$d = v \cdot t$$

$$V = \frac{\alpha}{t}$$

$$t = \frac{d}{v}$$

$$\rho = \frac{M}{V}$$

$$V = \frac{M}{\rho}$$

$$M = \rho V$$

FA286 Ne perds pas la boule!

Volume d'une boule: $V = \frac{4\pi r^3}{3}$; rayon: $r = \sqrt[3]{\frac{3V}{4\pi}}$

Corrigé

FA287 Quel prix!

a) Ils sont 6 amis.

b) Le prix est de 22 francs.

Corrigé

FA288 Dans une autre langue

- a) $\frac{x+y}{2} = 0.7 \Rightarrow (x;y) \in \{(0.7;0.7); (0.6;0.8); (3;-1.6); ...\}$ où x et y sont deux nombres.
- **b)** $5c + 2d = 60 \Rightarrow (c; d) \in \{(0; 30); (2; 25); (4; 20); (6; 15); (8; 10); (10; 5); (12; 0)\}$ où c est le nombre de pièces de 5 € et d le nombre de pièces de 2 €.
- c) $x y = -3 \implies (x; y) \in \{(0; 3); (1; 4); (-2; 1); ...\}$ où x et y sont les deux nombres.
- d) $x = 0.9y \Rightarrow (x; y) \in \{(90; 100); (9; 10); (45; 50); ...\}$ où x et y sont les prix respectifs des deux articles.
- **e)** $2(a+b) = 60 \Rightarrow (a;b) \in \{(1;29); (2;28); (3,5;26,5); \dots \}$
- f) $\frac{x^2 \cdot y}{3} = 72 \Rightarrow (x; y) \in \{(1; 216); (2; 54); (3; 24); \dots \}$

Corrigé

FA289 Triathlon

- a) Les équations 2, 5 et 6.
- b) Il y a 400 m de natation, 5,4 km de course à pied et 16,2 km de vélo.

Corrigé

FA290 Comment procéder?

Leur entraînement a duré 45 minutes.

Corrigé

FA291 80 cm²

1. *x* mesure 6 cm

3. *x* mesure 1 cm

2. *x* mesure 4 cm

4. On trouve x = 12 cm, mais cette grandeur excède le côté du carré, donc la situation est impossible.

Corrigé

FA292 D'un carré à un rectangle

La mesure du côté du terrain initial était de 30 m.

FA293 Au bon endroit

a) à 1,75 cm du point A

b) à 3,5 cm du point A

Corrigé

FA294 Balances

a)
$$M_{\text{cylindre}} = 30 \text{ g}$$

$$M_{\text{pyramide}} = 70 \text{ g}$$

b)
$$M_{\text{cube}} = 1275 \,\text{g}$$

$$M_{\text{boule}} = 750 \text{ g}$$

Corrigé

FA295 Le paquet

Il a 15 cm de large et 35 cm de haut.

Corrigé

FA296 A ta manière

- **a)** (3,64; 3,64)
- **b)** (8,25; 2,75)
- **c)** (0,5; -0,5)

Corrigé

FA297 Deux et deux

- a) Ces nombres sont 84 et 16.
- b) Le chocolat coûte 2.80 francs et le croissant 1.10 franc.
- c) Il y avait 265 personnes au parterre et 85 à la galerie.

Corrigé

FA298 Graphiquement

a) 2.
$$S = \{(-2:1)$$

b) 4.
$$S = \{(2:2)\}$$

a) 2.
$$S = \{(-2; 1)\}$$
 b) 4. $S = \{(2; 2)\}$ **c)** 1. $S = \{(x; y) \mid y = x - 1\}$ **d)** 3. $S = \emptyset$

d) 3.
$$S = \emptyset$$

Corrigé

FA299 A l'aide d'un graphique

a)
$$S = \{(1; 5)\}$$

b)
$$S = \{(3; 8)\}$$

c)
$$S = \emptyset$$

Corrigé

FA300 Substituez!

- 1. Selon explications des élèves. Voir également l'Aide-mémoire.
- 2. **a)** $S = \{(-16; 12)\}$
- c) $S = \emptyset$

e)
$$S = \{(1; 1)\}$$

b) S =
$$\left\{ \left(-\frac{4}{3}; \frac{10}{3} \right) \right\}$$

d)
$$S = \{(-400; 500)\}$$

f) S =
$$\left\{ 2 ; \frac{14}{3} \right\}$$

FA301 On substitue encore

a)
$$S = \{(2; 1)\}$$

d) S =
$$\left\{ \left(\frac{11}{9}; \frac{2}{9} \right) \right\}$$

b)
$$S = \{(2; 1)\}$$

e)
$$S = \{(4; 6)\}$$

c)
$$S = \{(0,2;3,2)\}$$

f)
$$S = \{(2; -2)\}$$

Corrigé

FA302 Combinez!

1. Selon les explications des élèves. Voir également l'Aide-mémoire.

2. a)
$$S = \{(1; 2)\}$$

d) S =
$$\{(x; y) \mid y = 3x - 5\}$$
 g) S = \emptyset

g)
$$S = \emptyset$$

b)
$$S = \{(-3; 0)\}$$

e)
$$S = \{(3; 2)\}$$

h)
$$S = \{(10; 0,2)\}$$

c)
$$S = \{(7; 5)\}$$

f)
$$S = \left\{ \left(\frac{18}{31}; \frac{94}{31} \right) \right\}$$

i)
$$S = \left\{ \left(-3; -\frac{8}{3} \right) \right\}$$

Corrigé

FA303 On combine encore

a) S =
$$\{(-\frac{155}{14}; -33)\}$$

d)
$$S = \{(1; -1)\}$$

b) S =
$$\{(0,36; -3,45)\}$$

e)
$$S = \{(5; 0)\}$$

c) S =
$$\left\{ \left(\frac{1}{3}; \frac{2}{3} \right) \right\}$$

$$f) S = \{(20; 20)\}$$

Corrigé

FA304 Comme bon te semble!

a)
$$S = \{(9,8;18)\}$$

c)
$$S = \{(18; 6); (-18; -6)\}$$

b)
$$S = \{(-1; -3)\}$$

d)
$$S = \{(12; 16)\}$$

f)
$$S = \{(-10; 12)\}$$

Corrigé

FA305 Comme il te plaît

a)
$$S = \{(1,25;3,75)\}$$

e)
$$S = \{(6; 2)\}$$

i)
$$S = \{(-2; -3)\}$$

b)
$$S = \{(3; 3)\}$$

f)
$$S = \left\{ (x; y) \mid y = -\frac{1}{3}x + \frac{1}{3} \right\}$$
 j) $S = \{(1,2; 1,8)\}$

$$i)$$
 S = {(1,2; 1,8)}

g)
$$S = \{(8; 4)\}$$

k)
$$S = \{(48; 24)\}$$

d)
$$S = \{(4; -0,5)\}$$

h)
$$S = \{(1; -1)\}$$

I)
$$S = \{(2; -18)\}$$

FA306 Ces quelques problèmes...

- a) 555 et 99
- **b)** 222 et –99
- **c)** 207 et 69
- d) 123 et 17

- e) 25 m et 30 m
- f) 24 billes vertes (et 7 jaunes)
- g) 2,4 m (et 2,5 m pour l'échelle)

Corrigé

FA307 Question de bosses

Il y a 45 chameaux et 30 dromadaires.

Corrigé

FA308 Et les bases?

Ses bases mesurent 9,5 cm et 4,75 cm.

Corrigé

FA309 A la baguette

Les baguettes horizontales mesurent 18 cm et les verticales 23 cm.

Corrigé

FA310 L'âne et le mulet

L'âne portait 2,2 q et le mulet 2,6 q, ce qui correspond respectivement à 220 kg et 260 kg.

Corrigé

FA311 Planche à voile ou catamaran

Le prix par personne d'une journée de planche à voile est de 17.50 francs et celui d'une journée de catamaran est de 27.50 francs.

Corrigé

FA312 A la confiserie

Il a préparé 7200 g de truffes.

Corrigé

FA313 D'un terrain à l'autre

Les dimensions de ce terrain sont 45 m et 30 m.

Corrigé

FA314 Baisse générale

Le prix du pull était de 62.50 francs et le prix de la robe était de 75 francs.

Mathématiques 9-10-11 © CIIP – LEP, 2013

FA315 Deux catégories

Il y a 5000 places assises et 7500 places debout.

Corrigé

FA316 Voyage en car

Il y a 8 grands cars et 4 petits.

Corrigé

FA317 Un peu de deuxième degré

1.
$$x_1 = -2$$
; $x_2 = 2$; $S = \{-2, 2\}$

2. Les solutions sont les abscisses des points d'intersection des deux représentations graphiques.

3. a)
$$x_1 = -10$$
 ; $x_2 = 10$; $S = \{-10 ; 10\}$

b)
$$x_1 = -8$$
; $x_2 = 8$; $S = \{-8, 8\}$

d)
$$x = 0$$
 ; $S = \{0\}$

Corrigé

FA318 Toujours plus difficile

1. Le nombre peut être (-9) ou 9.

2. Soit x le nombre choisi. $4x - 2x^2 = 0$; le nombre peut être 0 ou 2.

3. a)
$$x = 7$$
; $S = \{7\}$

b)
$$x_1 = -6$$
; $x_2 = 6$; $S = \{-6, 6\}$

c)
$$x_1 = -\frac{3}{4}$$
; $x_2 = \frac{1}{3}$; $S = \left[-\frac{3}{4}; \frac{1}{3} \right]$

FA319 Le retour du facteur

1. Ces égalités sont vraies pour:

a)
$$X_1 = -1$$
; $X_2 = 6$; $S = \{-1, 6\}$

b)
$$x = 8$$
; $S = \{8\}$

c)
$$x = -8$$
; $S = \{-8\}$

d)
$$x_1 = 0$$
; $x_2 = -7$; $S = \{-7, 0\}$

e)
$$x_1 = -8$$
; $x_2 = 8$; $S = \{-8, 8\}$

f)
$$x_1 = 0$$
; $x_2 = -\frac{1}{3}$; $S = \left\{ -\frac{1}{3} ; 0 \right\}$

2. Il y a toujours une infinité d'équations possibles ; tous les multiples des polynômes cités pour les questions a) à f), d'autres encore pour g):

a)
$$x^2 + 2x - 8 = 0$$

b)
$$x^2 - 25 = 0$$

c)
$$x^2 - 5 = 0$$

d)
$$x^2 - \frac{4}{49} = 0$$

e)
$$x^2 - 20x + 100 = 0$$

f)
$$x^2 = 0$$

g)
$$x^2 + x + 1 = 0$$
; $x^2 + p$ (p positif); ... = 0

Corrigé

FA320 Equations produits

1. a) $y_1 = 0$; $y_2 = 5$; $S = \{0; 5\}$

b)
$$x_1 = -9$$
; $x_2 = 9$; $S = \{-9, 9\}$

c)
$$y = 4$$
; $S = \{4\}$

d)
$$y_1 = 0$$
; $y_2 = 0.5$; $S = \{0; 0.5\}$

2. a) $y_1 = 0$; $y_2 = 8$; $S = \{0; 8\}$

b)
$$y_1 = -\frac{1}{2}$$
; $y_2 = \frac{1}{2}$; $S = \{-0.5; 0.5\}$

c)
$$x = 5$$
; $S = \{5\}$

d)
$$y = -10$$
 ; $S = \{-10\}$

e)
$$y_1 = 0$$
 ; $y_2 = -4$; $S = \{-4, 0\}$

f)
$$x = 3$$
; $S = \{3\}$

g)
$$x = -2$$
; $S = \{-2\}$

h)
$$u = -4$$
; $S = \{-4\}$

i)
$$z_1 = -1$$
; $z_2 = 1$; $S = \{-1, 1\}$

j)
$$X_1 = -9$$
; $X_2 = 9$; $S = \{-9, 9\}$

k)
$$y_1 = 0$$
; $y_2 = 5$; $S = \{0; 5\}$

I)
$$x_1 = -\frac{2}{3}$$
; $x_2 = \frac{2}{3}$; $S = \left\{-\frac{2}{3}; \frac{2}{3}\right\}$

FA321 A différents degrés

a)
$$x = \frac{5}{4}$$
; $S = \{1,25\}$

b)
$$y_1 = 3$$
; $y_2 = -4$; $S = \{3; -4\}$

c)
$$S = \emptyset$$

d)
$$x_1 = -3$$
; $x_2 = 3$; $S = \{-3; 3\}$

e)
$$x = \frac{5}{4}$$
; $S = \{1,25\}$

f)
$$m = 0$$
; $S = \{0\}$

g)
$$y_1 = 0$$
; $y_2 = 14$; $S = \{0; 14\}$

h)
$$x = -2$$
; $S = \{-2\}$

j)
$$x = 1$$
; $S = \{1\}$

k)
$$x = -5$$
 ; $S = \{-5\}$

k)
$$x = -5$$
 ; $S = \{-5\}$

1)
$$x = \frac{1}{3}$$
; $S = \left\{\frac{1}{3}\right\}$

Corrigé

FA322 Benoît et son nombre

Ce nombre peut être 0,5 ou 0.

Corrigé

FA323 Avec la formule de Viète

a)
$$x_1 = -15$$
; $x_2 = 11$; $S = \{-15; 11\}$

b)
$$x_1 = -\frac{5}{3}$$
; $x_2 = 2$; $S = \left\{ -\frac{5}{3}; 2 \right\}$

c)
$$S = \emptyset$$

d)
$$x_1 = -\frac{5}{2}$$
; $x_2 = 2$; $S = \{-2,5;2\}$

e)
$$x = 1$$
; $S = \{1\}$

f)
$$x_1 = \frac{1-\sqrt{5}}{2}$$
; $x_2 = \frac{1+\sqrt{5}}{2}$; $S = \left\{\frac{1-\sqrt{5}}{2}; \frac{1+\sqrt{5}}{2}\right\}$

g)
$$x_1 = -6$$
; $x_2 = 6$; $S = \{-6, 6\}$

h)
$$x = 1$$
; $S = \{1\}$

j)
$$x_1 = -3$$
; $x_2 = \frac{1}{5}$; $S = \{-3; 0,2\}$

FA324 Forme non canonique

a)
$$x_1 = -9$$
; $x_2 = \frac{1}{3}$; $S = \left\{-9; \frac{1}{3}\right\}$

b)
$$x_1 = -1$$
; $x_2 = \frac{5}{4}$; $S = \{-1, 1, 25\}$

c)
$$S = \emptyset$$

d)
$$x = -\frac{3}{2}$$
; $S = \{-1,5\}$

e)
$$x_1 = 7$$
; $x_2 = 10$; $S = \{7; 10\}$

f)
$$x_1 \cong 0.254$$
; $x_2 \cong 1.689$; $S = \{-0.254; -1.689\}$

g)
$$S = \emptyset$$

h)
$$x_1 = -5$$
; $x_2 = \frac{21}{4}$; $S = \{-5; 5, 25\}$

i)
$$x = \frac{5}{8}$$
; $S = \{0,625\}$

j)
$$x_1 = 9$$
; $x_2 = -\frac{1}{3}$; $S = \left\{9; -\frac{1}{3}\right\}$

Corrigé

FA325 Méthodes à choix

a)
$$X_1 = -2$$
; $X_2 = 0$; $S = \{-2, 0\}$

b)
$$X_1 = -14$$
; $X_2 = 4$; $S = \{-14; 4\}$

g)
$$S = \emptyset$$

c)
$$x_1 = -\frac{3}{2}$$
; $x_2 = \frac{3}{2}$; $S = \{-1.5; 1.5\}$

h)
$$X_1 = -2$$
; $X_2 = 0$; $S = \{-2, 0\}$

d)
$$x_1 = -2$$
; $x_2 = 1$; $S = \{-2, 1\}$

i)
$$x = 2$$
; $S = \{2\}$

e)
$$x = 5$$
; $S = \{5\}$

j)
$$x_1 = -2$$
; $x_2 = 6$; $S = \{-2, 6\}$

Corrigé

FA326 La solution?

- a) La mesure du côté de ce carré est de $1 + \sqrt{2}$ m.
- b) Le nombre peut être 45 ou -44.
- c) Les deux points d'intersection sont (-3,5; -3,25); (2;5).
- d) Le poisson est apparu à 30 aunes du premier palmier.
- b) La largeur de la bande est de 21 cm.

Corrigé

FA327 Carré aux côtés consécutifs

Les côtés des carrés mesurent respectivement 70 cm, 71 cm et 72 cm.

Corrigé

FA328 Le drapeau

La croix doit avoir une largeur de 1 m.

FA329 Dimensions à trouver

Le rectangle mesure 8 cm sur 32 cm.

Corrigé

FA330 On augmente et on diminue

Il y a une infinité de solutions : tous les rectangles avec une longueur et une largeur supérieures à 5 m et dont le demi-périmètre est de 20 m.

Corrigé

FA331 Longueur et largeur?

Il mesure 4 cm sur 18 cm.

Corrigé

FLPp112

1. a)
$$x_1 = 0$$
 et $x_2 = -\frac{1}{6}$

b)
$$x_1 = \frac{2}{7}$$
 et $x_2 = -1.3$

c)
$$x = -\frac{5}{2}$$

2.
$$S = \{(-7; 4)\}$$

3.
$$S = \{(6; -3)\}$$

4. a)
$$x_1 = -8$$
; $x_2 = 8$; $S = \{-8; 8\}$

b)
$$x_1 = -\frac{5}{6}$$
; $x_2 = 0$; $S = \{-\frac{5}{6}$; $0\}$

c) S =
$$\left\{ \frac{5 - \sqrt{29}}{4}; \frac{5 + \sqrt{29}}{4} \right\}$$

d)
$$x = 11$$
; $S = \{11\}$

e)
$$S = \emptyset$$

5. Soit b le nombre de bicyclettes, alors 50 - b représente le nombre de tricycles.

$$2b + 3(50 - b) = 117$$

$$b = 33$$

Il y avait 33 bicyclettes et 17 tricycles.

6. Soit *h* l'hypoténuse et *c* le troisième côté.

$$c + h + 6 = 30$$
 (périmètre)

$$c^2 + 6^2 = h^2$$
 (théorème de Pythagore)

Le troisième côté mesure 11,25 cm et l'hypoténuse 12,75 cm.

FA332 En équilibre?

Oui.

Corrigé

FA333 Encore quelques systèmes

a)
$$S = \{(3; -4)\}$$

b)
$$S = \{(0; -5)\}$$

c) S =
$$\{(x; y) \mid y = 7 - 2x\}$$

d)
$$S = \{(14; -8); (-14; 8)\}$$

e)
$$S = \{(-1; -7); (-1; 7); (1; -7); (1; 7)\}$$

f)
$$S = \{(-4; 0,2)\}$$

g)
$$S = \emptyset$$

h)
$$S = \{(45; 0)\}$$

Corrigé

FA334 Un peu de tout

a)
$$S = \emptyset$$

b)
$$x = \frac{5}{3}$$
; $S = \left\{ \frac{5}{3} \right\}$

c)
$$x = \frac{3}{2}$$
; $S = \{-4, 1,5\}$

d)
$$x_1 = \frac{-5 - \sqrt{65}}{2}$$
; $x_2 = \frac{-5 + \sqrt{65}}{2}$; $S = \left\{ \frac{-5 - \sqrt{65}}{2} ; \frac{-5 + \sqrt{65}}{2} \right\}$

e)
$$X_1 = -5$$
; $X_2 = 1$; $S = \{-5, 1\}$

f)
$$S = \emptyset$$

g)
$$x_1 = 1 - \sqrt{6}$$
; $x_2 = 1 + \sqrt{6}$;
 $S = \{1 - \sqrt{6}: 1 + \sqrt{6}\}$

h)
$$x_1 = 2$$
; $x_2 = 8$; $S = \{2; 8\}$

i)
$$x_1 = 0$$
; $x_2 = -\frac{1}{2}$; $S = \{-0.5; 0\}$

j)
$$X_1 = -10$$
; $X_2 = -2$; $S = \{-10; -2\}$

k)
$$x = 7$$
; $S = \{7\}$

I)
$$x_1 = 1$$
; $x_2 = -\frac{10}{3}$; $S = \left\{ -\frac{10}{3} ; 1 \right\}$

m)
$$x_1 = -\frac{5}{3}$$
; $x_2 = \frac{5}{3}$; $S = \left[-\frac{5}{3}; \frac{5}{3} \right]$

n)
$$x_1 = -1$$
; $x_2 = -\frac{7}{2}$; $S = \{-3,5; -1\}$

o)
$$x_1 = -5$$
; $x_2 = 5$; $S = \{-5, 5\}$

p)
$$x_1 = 0$$
; $x_2 = 5$; $S = \{0; 5\}$

q)
$$x = -\frac{1}{3}$$
; $S = \left\{-\frac{1}{3}\right\}$

r)
$$x_1 = \frac{-1 - \sqrt{2}}{3}$$
; $x_2 = \frac{-1 + \sqrt{2}}{3}$;

$$S = \left\{ \frac{-1 - \sqrt{2}}{3}; \frac{-1 + \sqrt{2}}{3} \right\}$$

s)
$$x_1 = -6$$
; $x_2 = 3$; $S = \{-6; 3\}$

t)
$$S = \emptyset$$

Corrigé

FA335 Somme et différence

Ces deux nombres sont 8,5 et 6,5.

Corrigé

FA336 Promenade lacustre

La distance séparant les deux randonneurs sera de 1,6 km après 48 minutes.

FA337 Rencontre

Ils se rencontreront après 36 minutes.

Corrigé

FA338 Permutations

Les nombres sont 832 et 238.

Corrigé

FA339 A contre-courant

Le bateau a une vitesse propre de 2,1 km/h et le courant une vitesse de 0,9 km/h.

Corrigé

FA340 Plus ou moins

a)	Equation	$2x^2 - 4x - 6 = 0$	$x^2 - 6x + 9 = 0$	$-x^2-4x=0$
	F ₁	1	3	-2
	Δ	64	0	16
	F ₂	2	0	-2
	Solution 1	3	3	-4
	Solution 2	-1	3	0
	Abscisse de l'axe de symétrie	1	3	-2
	Ecart	2	0	2

- **b)** F_1 est l'abscisse du sommet de la parabole, i.e. la moyenne des solutions de l'équation: $\frac{x_1 + x_2}{2}$. La valeur absolue de F_2 est l'écart à cette moyenne. Les solutions se trouvent donc de part et d'autre de F_1 avec un écart de $|F_2|$.
- c) Si le discriminant est égal à 0, l'écart F₂ sera aussi égal à 0 et les deux solutions sont confondues.
- d) La parabole n'a pas d'intersection avec l'axe Ox.

Corrigé

FA341 Trouve P!

- a) Il faut placer P à 11,25 cm de B.
- b) If y a deux solutions:
 - Pour que l'aire de ABP soit double de celle de CDP, P doit être à environ 16,36 cm de $B\left(\frac{180}{11}\right)$
 - Pour que l'aire de *CDP* soit double de celle de *ABP*, *P* doit être à environ 6,92 cm de $B\left(\frac{90}{13}\right)$.

FA342 Où est passé P?

P doit être à $\frac{10}{3}$ cm de C.

Corrigé

FA343 Cercles tangents

Les deux rayons mesurent respectivement 3,7 cm et 2,9 cm.

Corrigé

FA344 Caisse de classe

Le caissier s'est trompé, il y a 14 pièces de 5 francs et 15 de 2 francs.

Corrigé

FA345 Différence de volumes

Leurs arêtes mesurent respectivement 15 cm et 35 cm.

Corrigé

FA346 Découpage isocèle

Il faut le scier à environ 7,1 cm ($\sqrt{50}$) d'un sommet (distance mesurée le long d'une arête).

Corrigé

FA347 Problème chinois

L'eau a 12 pieds de profondeur.

Corrigé

FA348 Diophante

Diophante est mort à 84 ans.

Corrigé

FA349 Parc au mètre

Elles auront 1 m, 3 m et 7 m. On peut les trouver géométriquement ou algébriquement.

Corrigé

FA350 Un problème difficile

- a) Le résultat est 2.
- b) Non, une autre suite possible est : (-2; -1; 0; 1; 2)

Corrigé

© CIIP - LEP, 2013

FA351 Défi!

Oui, il y en a même deux: $\frac{1 \pm \sqrt{5}}{2}$ (Solutions de l'équation: $x = \frac{1}{x} + 1$)